Characterization of the methoxy carbonyl radical formed via photolysis of methyl chloroformate at 193.3 nm.

نویسندگان

  • M J Bell
  • K-C Lau
  • M J Krisch
  • D I G Bennett
  • L J Butler
  • F Weinhold
چکیده

This study investigates two features of interest in recent work on the photolytic production of the methoxy carbonyl radical and its subsequent unimolecular dissociation channels. Earlier studies used methyl chloroformate as a photolytic precursor for the CH3OCO, methoxy carbonyl (or methoxy formyl) radical, which is an intermediate in many reactions that are relevant to combustion and atmospheric chemistry. That work evidenced two competing C-Cl bond fission channels, tentatively assigning them as producing ground- and excited-state methoxy carbonyl radicals. In this study, we measure the photofragment angular distributions for each C-Cl bond fission channel and the spin-orbit state of the Cl atoms produced. The data shows bond fission leading to the production of ground-state methoxy carbonyl radicals with a high kinetic energy release and an angular distribution characterized by an anisotropy parameter, beta, of between 0.37 and 0.64. The bond fission that leads to the production of excited-state radicals, with a low kinetic energy release, has an angular distribution best described by a negative anisotropy parameter. The very different angular distributions suggest that two different excited states of methyl chloroformate lead to the formation of ground- and excited-state methoxy carbonyl products. Moreover, with these measurements we were able to refine the product branching fractions to 82% of the C-Cl bond fission resulting in ground-state radicals and 18% resulting in excited-state radicals. The maximum kinetic energy release of 12 kcal/mol measured for the channel producing excited-state radicals suggests that the adiabatic excitation energy of the radical is less than or equal to 55 kcal/mol, which is lower than the 67.8 kcal/mol calculated by UCCSD(T) methods in this study. The low-lying excited states of methylchloroformate are also considered here to understand the observed angular distributions. Finally, the mechanism for the unimolecular dissociation of the methoxy carbonyl radical to CH3 + CO2, which can occur through a transition state with either cis or, with a much higher barrier, trans geometry, was investigated with natural bond orbital computations. The results suggest donation of electron density from the nonbonding C radical orbital to the sigma* orbital of the breaking C-O bond accounts for the additional stability of the cis transition state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Jet Cooled Laser - Induced Fluorescence Spectrum of Methoxy . 1 . Vibronic Analysis of the and 2 States

The methoxy free radical has been formed in a supersonic free jet expansion by KrF photolysis of methyl nitrite. Its laser-induced fluorescence excitation and wavelength-resolved-emission _spectra have been recorded at low temperature. This paper reports the vibronic analysis of the C H 3 0 and CD30 A2Al XZE electronic spectra. A new value for the electronic origin has been determined as well a...

متن کامل

Unimolecular dissociation of the CH3OCO radical: an intermediate in the CH3O + CO reaction.

This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electron...

متن کامل

Electron Paramagnetic Resonance Spectroscopic Study on Nonequilibrium Reaction Pathways in the Photolysis of Solid Nitromethane (CH3NO2) and D3-Nitromethane (CD3NO2).

Thin films of nitromethane (CH3NO2) along with its isotopically labeled counterpart D3-nitromethane (CD3NO2) were photolyzed at discrete wavelength between 266 nm (4.7 eV) and 121 nm (10.2 eV) to explore the underlying mechanisms involved in the decomposition of model compounds of energetic materials in the condensed phase at 5 K. The chemical modifications of the ices were traced in situ via e...

متن کامل

Dynamics of the A-band ultraviolet photodissociation of methyl iodide and ethyl iodide via velocity-map imaging with 'universal' detection.

We report data from a comprehensive investigation into the photodissociation dynamics of methyl iodide and ethyl iodide at several wavelengths in the range 236-266 nm, within their respective A-bands. The use of non-resonant single-photon ionization at 118.2 nm allows detection and velocity-map imaging of all fragments, regardless of their vibrotational or electronic state. The resulting photof...

متن کامل

Photogeneration of distant radical pairs in aqueous pyruvic acid glasses.

The lambda > 300 nm photolysis of h4- or d4-pyruvic acid aqueous glasses at 77 K yields identical electron magnetic resonance (EMR) spectra arising from distant (r greater or similar 0.5 nm) triplet radical pairs. Spectra comprise: (1) well-resolved quartets, X, at g approximately ge, that closely match the powder spectra of spin pairs interacting across r approximately 1.0 nm with D approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 10  شماره 

صفحات  -

تاریخ انتشار 2007